		OP JINDAL UNIVERSITY	e: SC	DS-B-P	H501
					OPJU
		Mid Semester Examination, October-2023 BSc 5 th Semester [03UG021]		Outside the St	tes Tecesocasc
		Physics			water to
		Quantum Mechanics and Applications			
			x. Ma	rks: 50	
Note:					
			M	CO	KI
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
h 4-	a.	Explain about phase velocity.	5	CO1	K2
	b.	Derive the expression of time dependent Schrodinger wave equation.	5	CO2	K2
	c.	(i) Write the conditions for physical acceptability of wave function.			
		(ii) $\Psi(x) = x^3, \frac{-L}{2} < x < \frac{L}{2}$ Find $< x > $ and $< p^2 > $.	5	CO2	K2
1	d.	Derive the expression for total energy operator and momentum operator in one	_	000	
		and three dimension.	5	CO2	K2
	e.	(i) Write the expression of expectation value of position and momentum in one	-1-17		
		and three dimension.	5	CO2	K1
		(ii) What do you mean by expectation value and write its general formula.			
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Answer any 5 questions [05 x 10 marks=30 marks]			
		What do you mean by Ehrenfest Theorem. Prove that $\frac{d < x >}{dt} = \frac{< p_x >}{m}$	10	CO2	K2
	b.	Prove that $\frac{d < p_x >}{dt} = < F_x >$ from Ehrenfest Theorem.	10	CO2	K2
2	c.	(i) If $\Psi(x) = A$. Cos $\frac{\pi x}{L}$, $0 < x < L$ then normalize $\Psi(x)$ and find the value of A.			
		(ii) Explain about group velocity.	10	CO2	K2
	d.	(i) Explain Davison and Germer experiment.	10	COI	IZ 2
		(ii) Derive the expression of time independent Schrodinger wave equation.	10	CO1	K3

e)

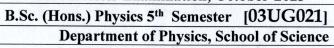
		,

Course Code: SOS-B-PH502

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023

B.Sc. 5th Semester [03UG021]


		Physics			
	m.	Solid State Physics			
Note:		e: 2 Hrs. Ma	x. Ma	rks: 50	
INOIC.			M	CO	KI
		Section A (20 marks)			
		Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Explain the difference between (a) Crystalline and Amorphous Solids (b) a unit cell and a primitive cell of a crystal.	5	CO1	K1
	b.	Find the packing density (PD) of Face-centered cubic structure.	5	CO1	K2
1	c.	Define the miller indices of a plane. How to find Miler indices of a plane? In a	-		
		triclinic crystal, a lattice plane makes intercept at a length (a, 2b and -3c/2). Find the Miller Indices of the plane.	5	CO1	K2
	d.	X rays of wavelength 0.12 nm are found to undergo second order reflection at a Bragg angle of 280 from a lithium fluoride crystal. What is the interplanar spacing of the reflecting planes in the crystal?	5	CO1	K2
	e.	Define the terms (a) conductor, (b) insulator, and (c) semiconductor. Discuss Quantum Hall effect and band formation in semiconductor.	5	CO3 & CO8	K2
er er		Section B (30 marks)			
		Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Draw the Diamond structure and find its packing density.	10	CO1	K3
	b.	What do you mean by Brillouin zones? How is it constructed?	10	CO1	K3
	c.	Derive Bragg's Law for the diffraction of X-rays from a crystal. Explain powder photograph method for the determination of crystal structure.	10	CO1	K2
2	d.	Write down assumptions of "Drude - Lorentz theory and establish relations		CO3	
		among electrical conductivity (σ), Relaxation time (τ) Electrical resistivity (ρ) and mobility of electron (μ).	10	& CO8	K3
			4		

	*	PERSONAL PROPERTY OF A CONTROL OF CO.
	7	
	4	
		A trade to reside the property of the second data through the property of the second second to the property of the second
		adelest former a some and a restandant of the water section of the
	ej.	
	Ð	

Course Code: SOS-B-PH503(i)

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023

Nuclear and Particle Physics

Time: 2 Hrs. Ma Note:					
Note:			M	CO	KL
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Which isobar of A = 75 does the liquid drop model suggest to be the most stable mucleus? Given $a_1 = 15.5$ MeV, $a_2 = 16.8$ MeV, $a_3 = 0.7$ MeV, $a_4 = 23.0$ MeV and $a_5 = 34.0$ MeV	5	CO2	K2
	b.	Determine, spin, parity and ground state of $^{17}_{9}F$ and $^{33}_{16}S$ nuclei.	5	CO2	K2
1	c.	Discuss meson theory of nuclear force.	5	CO1	K2
	d.	Calculate surface and coulomb energy of $^{238}_{92}U$. Given: $a_2 = 16.8$ MeV and $a_3 = 0.7$ MeV.	5	CO2	K2
	e.	Why are even-even nuclei more stable? Explain.	5	CO1	K2
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Derive semi-empirical mass formula.	10	CO2	
2	b.	What is electrical quadrupole moment? Derive the formula for electrical quadrupole moment. Draw the shapes of nucleus for zero, negative and positive values of electric quadrupole moment.	The state of the s	CO1	K3
2	c.	Which nucleus is more stable ${}_{3}^{7}Li$, ${}_{3}^{8}Li$? Given $m_p = 1.007825$ amu, $m_n = 1.008665$ amu, $m({}_{3}^{7}Li) = 7.016003$ amu, $m({}_{3}^{8}Li) = 8.022486$ amu.	10	CO1	K3
	d.	Discuss how to determine size and charge of a nucleus using experimenta methods.	10	CO1	K3

		Çi.
nui damentajos sens da		
		17

-

Course Code: SOS-B-PH504 (iii)

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023

B.Sc. 5th Semester [03UG021]

Physics

Energy	Materials	I
Line	TYLER COLIERS	-

		Energy Materials I			
	A STATE OF THE PARTY OF THE PAR	e: 2 Hrs. Ma	x. Ma	rks: 50	
Note:					
			M	CO	KL
		Section A (10 marks) All Questions are compulsory [05 x 02 marks=10 marks]			
	a.	Define Renewable energy carriers.	2	CO1	K1
	b.	What are solar fuels and how can they produced?	2	CO2	K1
1	c.	What is the k-vector and its role in a semiconductor?	2	CO2	K2
1	d.	What is meant by Fermi level in semiconductors? Where does the Fermi level lie in an intrinsic semiconductor?	2	CO1	K1
	e.	What is the effect of temperature on the reverse current of a PN junction?	2	CO2	K1
		Section B (16 marks) Answer any 4 questions [04 x 04 marks=16 marks]			
	a.	Explain the term doping and the reasons for doping in a semiconductor.	4	CO1	K2
	b.	What is the mechanism by which conduction takes place inside the semiconductor?	4	CO1	K2
2	c.	Why does a pure semiconductor behave like an insulator at absolute zero temperature?	4	CO2	К2
	d.	Explain the methods of energy conversion with a suitable block diagram.	4	CO5	K2
	e.	Explain the Optics of flat interfaces.	4	CO2	K2
		Section C (24 marks)			
		Answer all questions [03 x 08 marks=24 marks]			
	a.	Explain the working principle of a solar cell with suitable diagrams.	8	CO2	К3
3	b.	Explain the term:1. Irradiance and irradiation 2. Solar constant 3. Terrestrial radiation 4. Basic Sun-Earth Angles	8	CO1	K2
	c.	Explain the conductivity of metals and deduce its formula.	8	CO2	К3

		CONTRACTOR CONTRACTOR TO THE SECOND CONTRACTOR CONTRACT	
r			
4			
		ar where the feeting rate distribution of the feeting rate distribution of	

Course Code: SOS-B-CH501

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023

B.Sc.(H) 5th Semester [03UG022]

CHEMISTRY

		CC XII: Organic Chemistry- IV		J-15	
		e: 2 Hrs. Ma	x. Ma	rks: 50	2 4 1
Note	: Atte	mpt all sections	24	60	TZT
		Costion A (10	M	CO	KI
		Section A (10 marks) All Questions are compulsory [05 x 02 marks=10 marks]			
	a.	What is EMR? Write its important characteristics.	2	1	1
	b.	Define Photon. Write the relationship between frequency, wavelength and			
1		energy of the electromagnetic radiation.	2	1	1
1	c.	What is Bathochromic shift?	2	2	2
4	d.	Write the mathematical equation for Beer-Lambert's Law.	2	2	2
	e.	State the importance of Mid IR region in spectroscopy.	2	3	2
		Section B (16 marks)			
	77,000	Answer any 4 questions [04 x 04 marks=16 marks]			9
	a.	Write the basic principles involved during interaction of EMR.	4	1	2
	b.	Calculate the energy of a photon of laser light with frequency of 4.74×10^{14} Hz	4	1	2
2	c.	State the principle of UV-Vis spectroscopy. Also state the selection rule.	4	2	2
2	d.	Discuss with suitable examples Chromophores & Auxochromes.	4	2	1
	e.	For a linear molecule like CO ₂ , how many vibrational modes are possible, draw	4	3	2
		them. Which of these modes are IR active/inactive and why?	4	3	
		Section C (24 marks)			
	_	Answer any 3 questions [03 x 08 marks=24 marks]			
	a.	Discuss various regions of electromagnetic spectrum and their applications in	8	1	2
		different spectroscopic techniques	-	1	
	b.	What happens when Electromagnetic Radiations interact with matter? Discuss	8	1	2
		the types of Spectra obtained after interaction.		•	
	c.	Explain the effect of Conjugation on λ_{max} .	8	2	2
	d.	Use Woodward-Fieser rules for Calculation of λ_{max} in the following molecules:			
3					
3					
			8	2	3
				7,0004	
	e.	Describe all possible vibrations that may occur in a molecule when it absorbs			
		IR radiations.	8	3	2

PROPOSITION AND ACTION ACTION AND ACTION ACTION AND ACTION AND ACTION ACTION AND ACTION ACTION AND ACTION		
		5.

.

Course Code: SOS-B-CH502

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023

B.Sc 5th Semester [03UG022]

Department of Chemistry
Physical Chemistry-V

11-11-12-12-12-12	me: 2		Max. I	Marks:	50
Note	: All c	questions are compulsory	1	1 00	
			M	CO	KI
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Explain why energy of black body radiation is temperature dependent?	5	CO1	2
	b.	What do you mean by progressive and standing wave?	5	CO1	1
	c.	Give brief review of classical mechanics?	5	CO1	1
1	d.	Give reason for evolution of quantum mechanics?	5	CO1	2
1	e.	Show that the commutator			
		$\left[x, \frac{d}{dx}\right] = -1$	5	CO1	3
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Derive equation for standing wave ?	0 10	CO1	3
	b.	Determine whether the momentum operator commutes with KE?	10	CO1	2
	c.	Find the expression for the following operators:			
2		a) $\left(\frac{d}{dx} - x\right) \left(\frac{d}{dx} + x\right)$ b) $\left(\frac{d}{dx} + x\right)^2$	10	CO1	3
-	d.	Show that:			
		a) $\left[\hat{A}^2, \widetilde{B}\right] = \hat{A}\left[\widehat{A}, \widehat{B}\right] + \left[\widehat{A}, \widehat{B}\right]\hat{A}$	10	CO1	3
		b) $\left[\widehat{A}, \widehat{B}\right] = -\left[\widehat{B} - \widehat{A}\right]$			

d y	
1 9	
9	

Course Code: SOS-B-CH503 (ii)

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023

B.Sc. (Hons) Chemistry (03UG022)

CR	FFN	CHEN	AIS	TR	V
UI		CHEI		11/	. 1

	Time: 2 Hrs. Max. M				W. C.
			M	CO	KL
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Briefly define the Green Chemistry.	5	1	1
	b.	Why we need green chemistry? Explain.	5	1	1
	c.	Write all the twelve principles of green chemistry.	5	2	2
	d.	Explain atom economy with two examples.	5	2	2
1	e.	Explain how the real time monitoring can help in the implementation of green chemistry.	5	2	2
	f.	Why we need greener synthetic method for the synthesis of disodium iminodiacetate. Explain with chemical reactions.	5	3	3
		Section B (30 marks)			
		Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Explain the main goals of green chemistry in detail.	10	1	1
	b.	Explain the obstacles in the pursuit of the goals of green chemistry.	10	1	2
2	c.	Write the conventional method as well as green method for the synthesis of Catechol and Adipic acid.	10	3	3
	d.	Write any two principles of green chemistry (except Atom economy and real time monitoring) with at least two examples.	10	2	3

e)

1)

11

Course Code: [SOS-B-CH504 (ii)]

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023

B.Sc. 5th Semester [03UG022]

		BSc Honors Chemistry			
		Polymer Chemistry DSE II			
Time: 2 Hrs. Max. Marks: 50					
Note	<u>: </u>		M	CO	KL
	f)	Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]	171	CO	
	a.	What is Polymers? To write any four synthetic polymers name with structure.	5	1	1
	b.	What is Thermoplastic and Thermosetting polymers with suitable examples.	5	1	1
	c.	To write Molecular forces and chemical bonding in polymers.	5	1	2
1	d.	To writ difference between Addition and condensation polymerization process?	5	5	2
	e.	What is Teflon and PVC? To write their monomers with polymerization reaction.	5	5	1
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Write short notes on: a) PET b) Nylon 6,6 c) Bakelite d) Polystyrene	10	1	1
2	b.	What do you mean by polymerization? Explain different schemes of classification of polymers with suitable examples.	10	1	1
	c.	Explain classification of polymerization processes with free radical polymerization	10	2	2
	d.	Derive Carothers Equation for bifunctional and polyfunctional polymer system.	10	2	2

	Α,	OP JINDAL UNIVERSITY			OPJU
		Mid Semester Examination, October-2023		MANUFACT OF ST	no Transas
		B.Sc. (H)-5 th Semester [03UG021/22/23]		Maritan	1
		PHYSICS/ CHEMISTRY/ MATHEMATICS			
r.	0 T	THE ONE THING AND EXTREME OWNERSHIP	av I	Marks	. 50
and the same	: 2 H	tion A: All Questions are compulsory [05 x 02 marks=10 marks]	ах. 1	VIALKS	. 50
vote:		ction B: Answer any 4 questions out of 5 [04 x 04 marks=16 marks]			
		ction C: Answer any 3 questions out of 5 [03 x 08 marks=24 marks]			
		ctor of this wer any a questions out of a few means of the many	M	CO	KI
		Section-A (10 Marks)			
		All Questions are compulsory [05 x 02 marks=10 marks]			
	a.	What do you mean by 'The One Thing'?	2	C01	K
	b.	Write the Six Lies which mislead and derail from the path of success?	2	C01	K
1	Ĉ.	What do you mean by 'Going Small'?	2	CO1	K
	d.	What do you mean by GPS and 411?	2	CO2	K
	e.	What do you mean by 'Ordinary Habits' and 'Keystone Habits'?	2	C02	K
	b.	What do you mean by "Success is sequential, not simultaneous"? Discuss.	4	CO1	K
		Section-B (16 Marks) Answer any 4 questions [04 x 04 marks=16 marks]			
	a.	What is the impact of <i>doing too many things?</i> Discuss What do you mean by "Success is sequential, not simultaneous"? Discuss	4	CO1	K
	c.	What do you mean by "SIXTY-SIX DAYS TO THE SWEET SPOT." Discuss.	4	CO2	K
2	d.	Do you agree with the statement-'No one is self-made'. Discuss.	4	CO1	K
	e.	What do you mean by 'Time your task. Do what matters most first each day when		C02	
		your willpower is strongest'. Discuss.	4		K
		Section-C (24 Marks) Answer any 3 questions [03 x 08 marks=24 marks]			
	a.	What do you mean by Pareto's Principle? Discuss the Big Ideas related to the 'Willpower is Always on Will-Call.'	8	C01	K
	2/.	Discuss in detail the THREE TRUTHS which lead to the simple path of productivity?	8	C02	K
	c.	What is your 'ONE Thing' for this academic year? Create your GPS to achieve the ONE Thing.	8	CO1	К
3		What do you mean by 'The Focusing Question is a double-duty question'? Discuss	8	CO2	K
3	d.	in detail with example.			L. Carlo

9 7

Course Code: SOS-B-MA-502 **OP JINDAL UNIVERSITY** OPJU

Mid Semester Examination, October-2023

B. Sc. 5th Semester [03UG023]

Mathematics

	14.7			Discrete	Mathemat	ICS	
-	000	177	AND THE STATE OF T	The contract of the second of	Contract to the Contract of th	The control of the second	-

Note:		2 Hrs.	Mov M	COLUMN 117	
Note.			Max. M	larks: 5	U
			M	СО	KI
		Section A (10 marks) All Questions are compulsory [05 x 02 marks=10 marks]	makas A. L		
	a.	Define Tautology and contradiction.	2	CO1	K1
	b.	Use Truth table to show that $(p \to q) \equiv (\sim p \lor q)$	2	CO1	K
	c.	Define Inverse relation with one example.	2	CO2	K
	d.	Define Equivalence class with one example.	2	CO2	K
1	e.	Consider the following: p: Today is Thursday q: It is raining r: It is cold Write in simple sentences the meaning of the following	2	CO1	K
		(i) $p \rightarrow q$ (ii) $\sim q \rightarrow (r \land p)$ (iii) $\sim p \rightarrow (q \lor r)$ (iv) $(p \lor q) \leftrightarrow r$ Section B (16 marks)			
		Answer any 4 questions [04 x 04 marks=16 marks]			
	a.	Prove that the following (i) Associative Laws (ii) Distributive Laws	4	CO2	K2
	b.	Show by using Mathematical Induction that $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$	4	CO1	K
2	c.	Prove that the following propositions are Tautologies. (i) $((p \rightarrow q) \rightarrow r) \leftrightarrow ((p \leftrightarrow r) \lor (q \rightarrow r))$ (ii) $(p \land q) \lor (\sim p \land q) \lor (\sim p \land \sim q)$	4	CO1	K
	d.	If $A = \{1, 2\}, B = \{2, 3\}, C = \{3, 5\}$ then find (i) $A \times (B \cup C)$ (ii) $(A \times B) \cup (A \times C)$	4,	CO2	K
	e.	(iii) $A \times (B \cap C)$ (iv) $(A \times B) \cap (A \times C)$ Write a short note on types of relations with one example.	4	CO2	K

page 1

		Section C (24 marks) Answer any 3 questions [03 x 08 marks=24 marks]			an kaye ra
	a.	Define Equivalence relation. If I is the set of integers and the relation $x R y$ then $(x - y)$ is an even integer, then prove that R is an equivalence relation, where $x, y \in I$	8	CO2	K1
	b.	Prove by using Mathematical Induction that $n! \geq 2^n$ for $n \geq 4$.	8	CO1	K2
3	c.	Construct the truth tables for the following: (i) $(p \land \sim r) \leftrightarrow (q \lor r)$ (ii) $[(p \land q) \lor (\sim r)] \leftrightarrow p$	8	CO1	K1
3	d.	(i) A computer company must hire 25 programmers to handle system programming jobs and 40 programmers for applications programming. Of those hired, 5 are expected to perform jobs of both types. How many programmers must be hired.	8	CO2	K2
1		(ii) Prove that $A - (B \cap C) = (A - B) \cup (A - C)$			
	e.	Define Partial order relation. Let N be the set of partial integers, prove that the relation \leq , where \leq has its usual meaning, is a partial order relation on N	8	CO2	K2

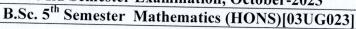
paye-2

Course Code: SOS-B-MA503(i)

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023 B. Sc. (Hons.) 5th Semester (03UG023)

Mathematics


		DSE I: Ring Theory			
		2 Hrs.	ax. M	arks: 5	0
Note:			M	CO	KI
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]	111	- 9	
	a.	Define Ring Without Zero Devisor and check the following for ring without zero devisor – (a) \mathbb{R} (\mathbb{R} denote the set of real number) (b) (z_5 , +, ·), (z_5 denote the set of residue class over modulo 5)	5	1	2
	b.	Show that 51Z in Z is neither Maximal Ideal nor Prime Ideal.	5	4	2
1	c.	If \emptyset is Homomorphism from \mathbb{Z} to \mathbb{Z} then check for the Homomorphism of the following – (a) $\emptyset(n) = \{2n : n \in \mathbb{Z}\}$	5	5	2
	d.	(b) $\emptyset(n) = 0$ If $\emptyset: M_2(R) \to R$, defined by $\emptyset(A) = Tr(A)$, where $Tr(A)$ denotes the trace of the matrix A. Then Check that \emptyset is homomorphism or not.	5	5	2
	e.	Show that the Intersection of two ideals of any ring (R,+,.) is an ideal of R	5	2	2
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Define Ring and Check that $(Z_8, +, \cdot)$ be a Ring or not with respect to the operation of addition and multiplication of Ring.	10	1	3
2	b.	 Explain the following- (a) Maximal Ideal with an example. (b) Check that (z₅, +,·) is Integral Domain or not. (c) Characteristics of Ring. (d) Integral Domain with an example. (e) Ring with Zero Devisor and one example. 	10	2	2
	c.	If $\emptyset : G \to G'$ be a Homomorphism of group G to G' then prove that $\frac{G}{\ker \varphi} \cong G'$	10	5	3
	d.	Prove that an ideal S in the ring of Integers is Maximal ideal if and only if S can be generated by an Integers.	10	4	3

1		*	
	,		
	0	,	
	1)	9)	
	3)	9)	
d		.0	

Course Code: SOS-B-MA504 (i)

OP JINDAL UNIVERSITY

Mid Semester Examination, October-2023

School of Science

DSEII:Number Theory Time: 2 Hrs. Max. Marks: 50 M CO KL Section A (10 marks) AllQuestions are compulsory [05 x 02 marks=10 marks] If a/c and b/c with gcd(a,b) = 1 then ab/c. K1For an arbitrary integer a, verify that 3/a(a+1)(a+2). b. K1 2 1 For n > 3, show that the integers n, n + 2, n + 4 cannot all be prime. 1 K1 2 1 d. Solve the linear congruence $5x \equiv 2 \pmod{26}$. K1 2 2 Find the remainder when 2⁵⁰ is divided by 7. K12 2 Section B (16 marks) Answer any 4 questions [04 x 04 marks=16 marks] Use Mathematical induction to prove for $n \ge 1$, $15/2^{4n} - 1$ 4 1 K2 Find the gcd of (12378, 3054) using Euclidean algorithm. Represent 6 as linear combination of 12378 and 3054. 4 » 1 K2 Show that \sqrt{p} is irrational for any prime p. 2 **K1** 4 1 Solve the set of simultaneous congruence $x \equiv 5 \pmod{11}$, $x \equiv 14 \pmod{29}$, $x \equiv 15 \pmod{31}$. 4 2 K2 Derive $a^{21} \equiv a \pmod{15}$ for all a. 4 2 K2 Section C (24 marks) Answer any 3 questions [03 x 08 marks=24 marks] State and prove Fundamental theorem of arithmetic. 8 1 K2 (i) Show that there is infinite number of primes. b. (ii) Show that sum of twins prime p, p+2 is divisible by 12 provided that 8 1 K2 p > 3. (i) Prove that the integer $53^{103} + 103^{53}$ is divisible by 39, and $111^{333} + 333^{111}$ is c. divisible by 7. 8 2 K2 (ii) For $n \ge 1$, use congruence theory to establish $43/6^{n+2} + 7^{2n+1}$. 3 (i) Show that $a^m \equiv b^m \pmod{n}$. 8 2 K2 (ii) Show that 41 divides 2^{20-1} State and Prove Fermat's theorem. Use Fermat's theorem to verify that 17 divides $11^{104} + 1$. 8 2 K2 weether whome