		Course	Code	e: MPH	1101
		OP JINDAL UNIVERSITY			OPJU
		Mid Semester Examination, November-2023			SEE THE MARK IN S
		M. Sc. 1st Semester [01PG011]		450 Mass	MARKET TO THE TOTAL PROPERTY.
		Physics			
	Tim	Mathematical Physics-I			
Note		e: 2 Hrs.	ax. Ma	arks: 50	
11010			M	CO	KL
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]	111		ILL
	a.	Prove that $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is an orthogonal matrix.	5	CO1	K1
1	b.	Compute the adjoint of $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$	5	CO1	K2
	c.	Find whether the $f(x) = x^2y^2$ is analytic or not?	5	CO2	К3
i jangsan	d.	Define Singularity and types of Singularity of a function. Find the poles or singularity of the following functions: (i) $\frac{1}{(z-2)(z-3)}$ (ii) $\frac{1}{\sin z - \cos z}$	5	CO2	K1
	e.	Find the product of the eigen value of the matrix $\begin{bmatrix} 3 & -3 & 3 \\ 2 & 1 & 1 \\ 1 & 5 & 6 \end{bmatrix}$	5	CO1	К2
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ find A^{-1} .	10	CO1	К3
2	b.	Derive Cauchy Rieman equations and prove that $f(z) = z^2$ is analytic.	10	CO2	K2
	c.	Prove Laurent's theorem.	10	CO2	K3
	d.	Derive Cauchy's Integral theorem and find the integral $\int_C \frac{3z^2 + 7z + 1}{z + 1} dz$ where C is the circle $ z = \frac{1}{2}$	10	CO2	K2
St. Things					Mark St.

		Course Co	ode: I	MPH	1102
		OP JINDAL UNIVERSITY		1	one.
		Mid Semester Examination, November-2023	and the state of		OPJU
		M.Sc. (Physics) 1 st Semester [03PG011]		bharcasaar an S ana Ma	PERI TRE SENDENCY SHEEMENT
		Department of Physics, School of Science	rzini		
		Classical Mechanics			
		e: 2 Hrs. Ma	x. Ma	rks: 50	
Note			7.		***
		C 4 4 (20	M	CO	KL
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Consider $L = \frac{1}{2}m\dot{r}^2 + \frac{P_{\theta}^2}{2m^2} - \frac{1}{2}kr^2$. Find out the equation of motion using Hamilton's canonical equations.	5	CO2	K2
	b.	Discuss canonical momentum and cyclic coordinates. Prove that generalized momentum conjugate to a cyclic coordinate is conserved.	5	CO1	K2
1	c.	Consider a particle moving on real line. Suppose the dynamics of this particle is determined by Hamiltonian $H = \frac{q^4 p^2}{2\mu} + \frac{\lambda}{q^2}$	5	CO2	K2
	d.	Find a Lagrangian of this system. Derive Newton's 2 nd law using Hamilton's theorem.			
	-		5	CO1	K2
	e.	Prove that generalized momentum conjugate to a cyclic coordinate is conserved.	5	CO1	K2
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]	No.		W.
	a.	State Hamilton's principle. Derive Lagrange's equations of motion using Hamilton's principle.	10	CO1	K3
2	b.	Derive Hamilton's canonical equation of motion.	10	CO2	K3
	c.	Determine the Hamiltonian of a charge particle moving under electromagnetic field.	10	CO2	К3
	d.	Consider a particle of mass m moving under a central force. If (r, θ) be the polar coordinates find out the equations of motion of the system.	10	CO1	K3

		Course Code: SO	S-B-	MPH	1103
		O P JINDAL UNIVERSITY		STITLE OF	
		Mid Semester Examination, Oct2023			OPJU
		M.Sc. 1 ST Semester		Hydriphers of S Viii Ma	STORE THE HAVE CO.
		STATISTICAL MECHANICS			
		Time: 2 Hrs.			
		Max. Marks: 50			
Note	e:	Commence of the animal superior of the superio			
			M	CO	KL
		Section A (20 marks)			
	7	Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Explain Entropy and Thermodynamic Probability. Also, Prove that	05	CO-1	K3
		$S = K \log W$.	03	CO-1	KS
1	b.	Define Gibbs Paradox. Give an expression for it.	05	CO-1	K3
	c.	Define the Partition function and derivation for it.	05	CO-3	K1
	d.	Define the Postulates of Statistical Mechanics.	05	CO-1	K1
	e.	Define Phase Space and its Types.	05	CO-1	K1
		Section B (30 marks)			
		Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Prove that the mean square fluctuations in the energy in the grand			
		canonical ensemble are equal to the value it would have in the	10	00.5	17.0
		canonical ensemble plus a contribution arising from the fact now	10	CO-3	K3
		the particle number N is also fluctuating.			
2	b.	What do you understand about Phase Space? State and Prove Liouville's Theorem.	10	CO-1	K2

Define Ensemble. What are the three types of Ensembles? Also,

Derive an expression for the Partition Function of Maxwell's

derive an expression for Partition Functions

10

10

CO-3

CO-3

K2

K3

Boltzmann Statistics.

Course Code: MPH 1104 **OP JINDAL UNIVERSITY** Mid Semester Examination, November-2023 M.Sc. 1st Semester [Program Code: 03PG011] Physics **Electronics** Time: 2 Hrs. Max. Marks: 50 Note: M CO KL Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks] Write a short note on differential amplifier. Find the output voltage formula CO 5 K2 for differential amplifier. 1 What is output offset voltage, input offset voltage and input offset current. CO 5 K2 1 (i) What is CMRR. CO 1 5 K2 (ii) What is thermal drift. 1 (i) Prove that operational amplifier as integrator. CO 5 K2 (ii) Prove that operational amplifier as differentiator. 1 (i) State De Morgan's theorem. CO 5 K2 (ii) Write the advantages and disadvantages of C-MOS. Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks] Explain about ECL. Write its characteristics, advantages and disadvantages of CO 10 K3

What do you mean by unipolar logic families. Describe about P-MOS. Write

What do you mean by wave form generator. Discuss about types of wave form

the applications, advantages and disadvantages of P-MOS.

(i) Discuss frequency response of operational amplifier.

(ii) Write the applications of operational amplifier.

2

CO

2

CO

2

CO

K3

K3

K3

10

10

10

ECL.

generator and its applications.

2

		Course	Code	: МСН	1101
		OP JINDAL UNIVERSITY		(82)	OPIU
		Mid Semester Examination, November-2023		Dominion or S	an bearing
		M.Sc. Chemistry 1st Semester (03PG012)		2500 M/A	ANAMAY.
		INORGANIC CHEMISTRY-I			
	Time	e: 2 Hrs. Ma	x. Ma	rks: 50	
			M	CO	KL
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Write the postulates and limitations of VSEPR theory.	5	1	1
.7	b.	Determine the geometry of XeO ₂ F ₂ and POCl ₃ .	5	1	2
1	C,	Explain dsp ² hybridization diagrammatically.	5	1	1
	d.	Determine the number and type of π -bond in SO ₃ and CO ₃ ²⁻ .	5	1	1
14	e.	How charge by size ratio of metal ion effect the stability of metal complexes?	5	2	2
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Define Bent's rule with its application on bond angle and bond length.	10	1	2
	b.	Define hybridization? Explain sp^3d , sp^3d^2 and sp^3d^3 type of hybridization with the help of examples.	10	1	1
2	c.	Explain the stepwise and overall formation constant with example and also define the relation between them.	10	2	2
	d.	Explain the factors affecting the stability of metal complexes with respect to ligands (only five factors).	10	2	2
	e.	Define Chelation in coordination complexes. Explain the thermodynamic aspect of stability in metal complexes due to chelation.	10	2	2

cCourse Code: MCH1102

OP JINDAL UNIVERSITY

Mid Semester Examination, November-2023

M.Sc. 1st Semester [Program Code: 03PG012]

		Department of Chemistry			
		Organic Chemistry			
			Iax. I	Marks:	50
Note	: All	Questions are compulsory			
			M	CO	KL
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	The given compound is aromatic or non-aromatic, explain.			
					A. Carlot
			5	CO 1	2
1	b.	How will you differentiate resonance and tautomerism with suitable examples?	5	CO 3	1
	c.	Cyclopentadiene exhibits more acidic character as compared to cycloheptatriene. Explain.	5	CO 2	2
	d.	Explain why overall energy of two bonding butadiene molecular orbital is lower than that of two molecular orbitals for ethane?	5	CO 2	1
	e.	Resonance energy of benzene is much higher than 1,3-butadiene. Why?	5	CO 2	1
		Section B (30 marks)			
		Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Explain why energy of half chair conformation of cyclohexane is higher than chair, boat and twist boat conformation?	10	CO 3	2
2	b.	Despite of more angular strain in cyclohexane compared to cyclo-pentane, cyclo-hexane exhibit more stable conformation. Explain why?	10	CO 1	1
	c.	Heat of hydrogenation of cyclohexane to cyclohexene is -28.6 kcal/mole. The observed heat of hydrogenation of benzene to cyclohexane is -49.8 kcal/mole. Find out the resonance energy of benzene?	10	CO 2	3
	d.	Explain delocalized chemical bonding on the basis of VBT and MOT	10	СО	2

Course Code: MCH 1103

OP JINDAL UNIVERSITY

Mid Semester Examination, November-2023

M.Sc. 1st Semester [03PG012] Chemistry

PHYSICAL CHEMISTRY -I

Note		2 Hrs.	ax. M	arks: 5	50
Note			M	CO	KL
	f.	Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			Language of the Control of the Contr
	a.	To write "Conservation of Energy" law and 3rd law of thermodynamics.	5	1	1
	b.	What is equilibrium constant? Discuss temperature-dependence of equilibrium constant.	5	1	2
1	c.	To derive Maxewell relation from internal energy.	5	1	2
	d.	To derive Helmholtz and Gibbs free energies.	5	1	2
	e.	Proof that $S = K \log W$	5	5	2
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	To derive Maxwell relations of thermodynamics.	10	1	2
2	b.	What is second law of thermodynamics? To write System, surrounding and thermodynamic process.	10-	-/1	-1 v
	c.	Derive an expression for partition function of Bose Einstein statistics.	10	5	2
	d.	Distinguish between Maxwell – Boltzmann, Bose- Einstein and Fermi-Dirac statistics.	10	5	2

OP JINDAL UNIVERSITY

Mid Semester Examination, November-2023

M.Sc. Mathematics 1st Semester [Program Code: 03PG013]
Introduction to Python

Time: 2 Hrs. Max. Marks: 50					
			M	CO	KL
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Write a program to accept the number from a user and find the factorial of a number using a function.	5	1	1
	b.	Write a program to read a temperature in Celsius from the user and Convert it into Fahrenheit.	5	1	1
	c.	Write a program to check whether the number entered is an Armstrong number or not. $153 = 1^3 + 5^3 + 3^3$	5	2	1
1	d.	Write a program to display the pattern of stars given as follows: *** *** **** ****** ********	5	2	1
	e.	Write a Python program to read the marks of 5 subjects through the keyboard. Calculate the total marks, percentage and grade of marks obtained by the student. Assume maximum marks that can be obtained by a student in each subject us calculate the total marks, percentage and grade of a student.	5	2	1
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
	a.	Explain looping control statements in Python with syntax and example to each.	10	2	2
2	b.	Describe Operator. What are the types of operators in Python? Explain the types of Operator in detail.	10	1	2
2	c.	Explain the function of Python and describe it with syntax and example. What are the types of arguments in Python function definition in detail?	10	3	2
	d.	Explain Data Types in Python and describe them with syntax and example. What are the types of Data Type in Python? Explain in detail.	10	1	2

10

10

3

3

OP JINDAL UNIVERSITY

Mid Semester Examination, November-2023

		M.Sc. 1st Semester (03PG013)		***	
		Mathematics			
		Real Analysis			
		2 Hrs.	ax. M	arks: 5	50
Note			M	CO	IZI
		C4' A (20 1)	M	CO	KL
Marton .		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]	ur.		
	a.	Define Metric Space and Show that if $d: R \times R \to R$ be defined as			
		$d(x,y) = \frac{ x-y }{1+ x-y } \text{ then (R,d) is Metric Space.}$	5	2	2
	b.	Show that every convergence sequence in metric space converge to a unique limit.	5	2	2
	c.	Write Formula for Continuity and check Continuity of the given Function at			1 8 6
		x=0	5	1	2
1		$f(x) = x \sin\frac{1}{x}, \ f(0) = 0$			
	d.	Check Continuity of the given function at x=0			
		$\frac{1}{2}$	_		
		$f(x) = \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}}$	5	1	2
		$1+e^{\frac{1}{x}}$			
	e.	If A and B are Separated Set of (X,d) and $A \cup B$ is closed set then show that A	_	_	
		and B are closed.	5	2	2
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]			
1	a.	Prove that in Metric Space every Closed Sphere is Closed Set.	10	2	3
	b.		10	2	3
*	0.	If A be a subset of Metric Space (X,d) then prove that $(a) A^0 \subseteq A$			
		(a) $A^0 \subseteq A$ (b) A^0 is Open Set.	10	2	3
2				Contraction 1	
2		(c) A is open if and only if $A^0 = A$			
	c.	Define Cantor Set and Prove that if P is Cantor Set ,then it is (a) Compact Set	10	2	3

Define Complete Metric Space and if (X,d) be a Metric Space and Y be a

subspace of X then prove that Y is Complete if and only if Y is Closed.

,(b) Perfect Set

OP JINDAL UNIVERSITY

Mid Semester Examination, November-2023

Offers to M. Sc. (Mathematics and Computing) ADVANCED ALGEBRA

			N/I		171
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]	M	CO	KI
	a.	Prove that the necessary and sufficient condition for a non-empty subset W of a vector space V (F) to be a vector space V is $a,b \in F$ and $\alpha,\beta \in W \Rightarrow a\alpha + b\beta \in W$.	5	CO1	2
	b.	State and Prove Triangle Inequality and Parallelogram Law for an inner product space.	5	CO2	2
1	c.	Find the Range, Null Space, Rank and Nullity of T, if $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a, b) = (a-b, b-a, -a)$.	5	CO1	2
	d.	Prove that the intersection of any two subspace of a vector space V (F) is also a subspace of V (F).	5	CO1	2
	e.	If W is a subspace of a finite dimensional vector space V(F), then prove that $\dim \frac{V}{W} = \dim V - \dim W$.	5	CO2	1
		Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks]	San P		
	a.	Define Skew Hermitian Matrix with suitable example. Find the Eigen Value			
		and Eigen Vector of the given matrix: $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}.$	10	CO1	2
	b.	and Eigen Vector of the given matrix: $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ Find the matrix representation of linear transformation T on V ₃ (R) defined as	10	CO1	2
	b. c.	and Eigen Vector of the given matrix: $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}.$ Find the matrix representation of linear transformation T on V ₃ (R) defined as T(a, b, c)=(2b+c, a-4b, 3a) on the basis B= $\{(1,1,1), (1,1,0), (1,0,0)\}.$ Show that the following matrix A is diagonalizable A= $\begin{bmatrix} -3 & 4 \\ 2 & -1 \end{bmatrix}.$			
	c.	and Eigen Vector of the given matrix: $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ Find the matrix representation of linear transformation T on V ₃ (R) defined as T(a, b, c)=(2b+c, a-4b, 3a) on the basis B= $\{(1,1,1), (1,1,0), (1,0,0)\}$.	10	CO1	2

OP JINDAL UNIVERSITY

Mid Semester Examination, November-2023

Mathematics

Advanced	Differential	Equation
Auvanceu	Differential	Lquation

T	ime:	2 Hrs.	ax. M	larks:	50
Note:					10-11
			M	CO	KL
		Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks]			
	a.	Illustrate by an example that a continuous function may not satisfy a Lipschitz condition on rectangle.	5	CO 1	K2
	b.	Consider $f(x,y) = x^3 y $. Prove that f satisfies a Lipschitz condition on $R: x \le 2, y \le 2$ ever though $\frac{\partial f}{\partial y}$ does not exist at $(x,0)$ if $x \ne 0$.	5	CO 1	K2
1	c.	Define orthogonal set of functions with respect to a weight function and orthonormal set of function with respect to a weight function.	5	CO 2	K1
	d.	For the initial value problem $\frac{dy}{dx} = y^2 + \cos^2 x$, $y(0) = 0$, determine the interval of existence of its solution given that R is the rectangle containing origin, $R: \{(x,y): 0 \le x \le a, y \le b, a > 1, b > 0\}$.	5	CO 1	K1
	e.	Show that the set of functions $\{cosnx\}$, $n=0,1,2,3,$ is orthogonal on the interval $-\pi \le x \le \pi$ and find the corresponding orthonormal set of functions.	5	CO 2	K1
		Section B (30 marks)	# #T		71647
		Answer any 3 questions [03 x 10 marks=30 marks]			
4,40	a.	State and prove Cauchy-Peano existence theorem.	10	CO 1	K2
	b.	Find all eigenvalues and eigenfunctions of the Strum-Liouville problem $X'' + \lambda X = 0$, $X(0) = 0$, $X'(\frac{\pi}{2}) = 0$.	10	CO 2	K2
2	c.	Find the third approximation of the solution of the equation $\frac{d^2y}{dx^2} = x^3(y + \frac{dy}{dx})$, where $y = 1$ and $\frac{dy}{dx} = \frac{1}{2}$ when $x = 0$.	10	CO 1	K2
	d.	Define periodic boundary conditions. Attempt to find the solutions of the boundary value problen $y'' + 9y = 0$, $y'(0) = 0$, $y'(\frac{\pi}{2}) = 6$. State whether the problem has no solutions, one solution o infinitely many solutions.	10	CO 2	К3

Course Code: MMA-23-1104 OP JINDAL UNIVERSITY Mid Semester Examination, October-2023 M.Sc 1st Semester [03PG013] Mathematics **Discrete Mathematics** Time: 2 Hrs. Max. Marks: 50 \mathbf{CO} KL Section A (20 marks) Answer any 4 questions [04 x 05 marks=20 marks] Define Isomorphic graph and walk with example. K1Define Spanning Tree with suitable example. Also define Minimum spanning b. 1 K1 Prove that for any positive integer n, c. 1 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{n}$ 5 4 K2 d. Solve $a_n - 6a_{n-1} + 9a_{n-2} = n$. 5 4 K2 Solve $a_n + 5a_{n-1} + 6a_{n-2} = 3n^2$. 5 4 K2 Section B (30 marks) Answer any 3 questions [03 x 10 marks=30 marks] (i) State and Prove Handshaking Theorem. (ii) Prove that an undirected graph has an even number of odd degree 10 1 K1 vertices. Write notes on different types of tree. Find the minimal spanning tree using b. Prim's algorithm for the following graph: 5 K2 10 1 2 6 2 ν_3 (i) Construct the truth table of $[(p \land q) \lor (\neg r)] \Leftrightarrow p$. (ii) Prove that for every natural number $6^{n+2} + 7^{2n+1}$ is divisible by 43. 10 4 K2 Solve $a_n - 7a_{n-2} - 6a_{n-3} = 0$ with $a_0 = 9, a_1 = 10, a_2 = 32$.

Solve $a_n - 2a_{n-1} - a_{n-2} + 2a_{n-3} = 0$ with $a_0 = 3, a_1 = 6, a_2 = 0$.

10

10

K2

K2